
Automatic Retouch Dog Eyes

Yi Ge
CS 280A Final Project, UC Berkeley

billy.ge@berkeley.edu

Abstract

While it is easy and popular to retouch a human being in
photos, such as making the eyes larger or the body slimmer,
none of those tools are applicable to dogs, because of the in-
ability to recognize facial features of dogs. In this paper, we
make it possible for dog-lovers to enlarge or shrink dog eyes
in our favorite dog pictures. We accomplish the task by fine-
tuning the YOLO object detection model to automatically
identify dog eyes using the Columbia Dog Dataset. Then
we apply the triangular mesh technique in image warping
and morphing to make changes to the detected dog eyes re-
gions based on user controls in real time.

1. Introduction
When we talk about machine learning and dogs, many

research have centered around breed classification [1, 5, 6].
However, many cool tools which are accessible to humans
(Figure 1) are not yet made available to dogs, such as auto-
matic retouching body regions. Figure 2 shows the inability

Figure 1. Example of human retouch effects. It includes enlarge-
ment of the eyes and shrinking of the mouth. It is done using
BeautyCam.

Figure 2. Example of dog retouch fail on BeautyCam.

to recognize dog faces in a popular human photo editing
platform called BeautyCam. If a human being shows up in
an image, all we need to do is to select the body regions we
want to retouch. A scrolling bar will then appear for users to
control the degree in which he or she wants to change. Un-
fortunately, those tools are not currently available to dogs.

While it is our future goal to allow equal access of au-
tomatic retouching of all body parts to dogs, this paper
presents the very first effort to establish a solution pipeline
using dog eyes as our starting point.

At a high level, our solution is made up of two parts.
First, we enable automatic dog eyes detection by fine-tuning
the popular YOLO (You Only Look Once) object detec-
tion model [2, 4]. Second, we expand or contract the de-
tected dog eye bounding boxes based on user control to
perform image warping and morphing using the triangular



Figure 3. Example of fifteen dog facial feature manual labels in
Columbia Dog Dataset.

mesh technique. More details about our methods are ex-
plained in the methodology section.

2. Data
The dataset we use in this paper is the Columbia Dog

Dataset, which contains 8350 dog images of 133 different
dog breeds. In addition, there are fifteen manually-labeled
dog facial features in each dog picture.

In our paper, the data are mainly used for fine-tuning
the YOLO model. Among the fifteen manually-labeled dog
facial features, six are relevant to dog eyes in which we take
advantage of. An example of the manual labeling is shown
in Figure 3.

In order to balance model performance and computation
costs, we did not use the entire Columbia Dog Dataset. In-
stead, we randomly sampled 1330 dog images for training
and 665 dog images for validation. In addition, our sam-
pled data comes from the 133 dog breeds evenly, so that
our fine-tuned model share the same performance in all dog
images.

3. Methodology
There are two stages in our method. First is fine-tuning

an object detection model. Second is enlarging or shrinking
the detected dog eyes based on user control.

In order to enable automatic detection of dog eyes, we
decide to begin with the YOLO (You Only Look Once)
model, due to its speed, accuracy, and easy-to-customize
environment [4]. YOLO is a CNN-based object detection
model, trained on the COCO dataset (Common Objects in
Context) [3] with 80 classes. Interestingly, the pre-trained
YOLO model is able to detect dogs, since dog is one of the
80 classes in the COCO data. However, it is not able to de-

Figure 4. Performance comparison among different YOLO model
versions.

tect dog eyes. The YOLO model made its name in 2016 by
Redmon et al. Over the past ten years, many improvements
have been added, making the popular model more power-
ful. The version of YOLO model we are using in this paper
is YOLO 11n, which was released as recent as September,
2024 [2]. Figure 4 shows the performance comparison be-
tween different YOLO model versions.

To fine-tune the pre-trained YOLO model, we take
advantage of the manually labeled dog images in the
Columbia dog dataset. There are three manual labels for
each dog eye. One on the left of the dog eye, one on the
right of the dog eye, and one in the middle. However, the
ground truth for fine-tuning has to be a bounding box, which
means we need not only the two sides of the dog eye, but
also the top and bottom. To solve the problem, we decide to
first take the min and max both horizontally and vertically
in each dog eye three-manual-labels. Second, we pick scal-
ing factors conservatively to multiply the horizontal min by
0.98, the horizontal max by 1.02, the vertical min by 0.93
and the vertical max by 1.07. We believe that the two sides
of the dog eye have accurate labels, hence we choose not to
scale it aggressively. YOLO environment requires all cus-
tom dataset used for fine-tuning the model to be in a par-
ticular format, so we prepare our sampled Columbia Dog
Dataset accordingly.

After data preparation, we fine-tune the YOLO model

Figure 5. Change in performance over 100 epochs of fine-tuning
YOLO.



Figure 6. Confusion matrix result in the training data post fine-
tuning.

for 100 epochs, which takes less than an hour on T4 GPU.
Figure 5 tracks the change in performance in the fine-tuning
process. It is obvious that most metrics have plateaued, but
training deeper may still improve the model although it may
not be cost efficient. Figure 6 shows the performance of our
fine-tuned YOLO model on the training data. It is able to
correctly detect dog eyes more than 90% of the time.

Figure 7a shows the output of our fine-tuned YOLO
model. Two dog eyes are detected, represented in blue
bounding boxes. The next step is to retouch dog eyes based
on user control of enlarging or shrinking effects. We ac-
complish this with the triangular mesh algorithm.

In triangular mesh, we first collapses all bounding box
coordinates and put them into a correspondence point list.
Then for each bounding box, we add the center point of the
bounding box to our list. We also add the four corner points
of the image to the list. Now we perform Delaunay triangu-
lation. Figure 7b shows the example output after Delaunay
triangulation.

Based on user control, we set the scaling factor to ex-
pand or contract the bounding boxes for each dog eye. We
follow the implementation on BeautyCam, where users are
able to at most scale up or down the size by 2. We imple-
ment this by asking the user to enter a value between 1 and
100, assuming the current size is 50. We then replace the
bounding box coordinates in our original correspondence
list with the new bounding box coordinates, and plotting
using the same triangulation. Figure 7c shows the shrink-
ing bounding boxes with scaling factor equals 35 whereas
Figure 7d shows the enlarging bounding boxes with scaling
factor equals 85.

Next, we morph the original correspondences to the ad-
justed correspondences using the same triangulation. We
do so by iteratively going through each triangle. First, we

(a) detected bounding boxes (b) original correspondences

(c) shrinking correspondences (d) enlarging correspondences

Figure 7. Example of dog eye retouch steps.

compute the affine transformation matrix. Second, we use
the inverse of the affine transformation matrices to interpo-
late color for each pixel inside a triangle.

4. Results
Figure 8 shows the final outputs of the example in Fig-

ure 7. It is pretty obvious that Figure 8b has smaller dog
eyes and Figure 8c has larger dog eyes compared to the orig-
inal input dog image. Everything looks pretty natural.

More visual examples are shown in Figure 10 and Fig-
ure 11 in the appendix.

5. Limitation
There are two main limitations in our approach, one

about the fine-tuned YOLO model not able to automatically
detect all dog eyes in an image, the other about visual de-
fects in the triangular mesh output.

First, our fine-tuned YOLO model is not able to detect
all dog eyes in the image, as shown in Figure 9, although it
is able to distinguish dog eyes from human eyes and other
animal eyes (Figure 12 in the appendix). When there are
more than one dog in the input image, our fine-tuned YOLO
model fails most of the time. The main reason behind this
problem is our training data. Although the Columbia Dog
Dataset contains manually labeled dog facial features in
each dog image, it only labels the most dominant dog, even
though there may be more than one dogs in the image. Tak-
ing advantage of this incomplete manual labeling, we de-
cide to ignore this data issue in order to save ourselves a lot
of hard labor work, leading to the fine-tuned YOLO model
maybe thinking that there cannot a lot of dog eyes in one
input dog image.



(a) original input image

(b) shrunk dog eyes

(c) enlarged dog eyes

Figure 8. Example of dog eye retouch results.

Second, our triangular mesh output has a clear defect:
it does not only changes the size of the dog eyes, it also
changes the relative size of every object in the image, in-
cluding the dog. Please take a look at Figure 10 and Fig-
ure 11 in the appendix for more visual examples. The direct
cause of this issue is that there are too few correspondence
points when computing our triangulation. In the current ap-
proach, many bounding box corner point form large trian-
gles with the corner points of the image. Therefore, when
the triangle changes, objects outside the dog also changes.
One simple solution is to add four more coordinates slightly
outside the bounding box for each dog eye detected. In this
way, the outside bounding box is connected to the corner
points of the image. Those triangles are not changed in

the interpolation process. The inner triangles change due
to changes in bounding boxes based on user control. These
triangle changes are limited on dog faces.

6. Conclusion

This paper shows that it is not difficult to apply the cool
visual tools that human can enjoy to dogs. Although our
methodology have some defects, the overall visual effects
are natural and fun. We look forward for future works in
related fields!

References
[1] Ying Cui, Bixia Tang, Gangao Wu, Lun Li, Xin Zhang,

Zhenglin Du, and Wenming Zhao. Classification of dog
breeds using convolutional neural network models and sup-
port vector machine. Bioengineering, 11(11), 2024. 1

[2] Rahima Khanam and Muhammad Hussain. Yolov11: An
overview of the key architectural enhancements, 2024. 1, 2

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2015. 2

(a) (b)

(c) (d)

(e) (f)

Figure 9. Example of YOLO dog eye detection fails.



[4] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection, 2016. 1, 2

[5] Nattakan Towpunwong and Napa Sae-Bae. Dog breed classifi-
cation and identification using convolutional neural networks.
ECTI Transactions on Computer and Information Technology
(ECTI-CIT), 17:554–563, 12 2023. 1

[6] Akash Varshney, Abhay Katiyar, Aman Singh, and Surendra
Chauhan. Dog breed classification using deep learning. pages
1–5, 06 2021. 1

7. Appendix

(a) original input image (b) original input image

(c) scaling factor = 10 (d) scaling factor = 35

(e) scaling factor = 90 (f) scaling factor = 70

Figure 10. More visual examples of dog eyes shrinking and en-
larging effects.



(a) original input image (b) original input image

(c) scaling factor = 30 (d) scaling factor = 40

(e) scaling factor = 80 (f) scaling factor = 60

Figure 11. More visual examples of dog eyes shrinking and en-
larging effects.

(a) original input image

(b) original input image

Figure 12. Our fine-tuned YOLO model is able to distinguish dog
eyes from other animal eyes.


	. Introduction
	. Data
	. Methodology
	. Results
	. Limitation
	. Conclusion
	. Appendix

